This article explores how quantum thinking can inform a modern data analytics strategy, enabling teams to innovate safely without disrupting existing operations. Based on insights from David Draper, Data Science Manager at Iris Software Group, it offers practical guidance on modular system design, embedding innovation in delivery cycles, and improving AI explainability. Ideal for data leaders seeking resilient, forward-looking analytics strategies.
This article explores how data teams can adopt strategic practices from the crypto industry, particularly MoonPay’s approach under Director of Data Emily Loh, to move beyond reactive tasks and implement a proactive, value-driven data strategy. It covers resource allocation frameworks, AI implementation, and system design principles to help teams operate more effectively in fast-changing environments.
In today’s competitive landscape, a robust data strategy is essential. Data teams often struggle to evolve from reactive service providers to proactive strategic partners. Crypto data teams, facing rapidly shifting markets and strict regulatory environments, provide actionable lessons for all sectors.
In this article, you’ll discover how Emily Loh, Director of Data at MoonPay, applies advanced data strategy principles to turn challenges into opportunities:
Emily Loh leads a 15-person data team at MoonPay covering engineering, data science, and machine learning. Formerly of Coinbase, Loh brings an unconventional background in literature that enriches her team’s storytelling capabilities. “This is just storytelling,” she says. “It helps us focus on outcomes, not just outputs.”
MoonPay, the “Stripe of crypto,” processes irreversible transactions in real-time while navigating volatile regulatory environments. These conditions demand an agile and forward-thinking data strategy.
At MoonPay, Loh uses a structured resource allocation model:
This method creates protected space for long-term projects and strategic initiatives, reducing the risk of reactive overload.
Whether you adopt a 25/50/25 or 30/40/30 split, the key principle remains: intentionally allocate time to support strategic data strategy goals.
Many companies fall into the trap of implementing AI without purpose. Loh’s approach is more disciplined: AI must serve a clear business function.
“Less time on YAML files, more time on value,” says Loh. A focused AI strategy elevates your data team’s effectiveness.
Building systems for uncertain futures is core to effective data strategy. Crypto offers an extreme example, but lessons apply across AI, fintech, and e-commerce.
“We need laser focus on priorities,” says Loh. A future-ready data strategy requires both adaptability and foundational strength.
Crypto data teams thrive under pressure because they implement structured, flexible, and forward-looking data strategies. By:
…you can transition from a reactive support function to a strategic business partner.
Mid-level data leaders navigating operational and executive pressures will gain the most from these lessons. Whether in startups or large enterprises, these practices foster sustainable innovation.
Begin with a time audit and apply the 20/40/40 framework. Build modularity into your systems. Above all, maintain clarity on strategic priorities.
Learn More To hear the full conversation with Emily Loh and discover additional insights, listen to the complete Data Matas podcast episode.
Let’s be honest—ETL transformations have a bad reputation. Talk to any data leader, and they’ll tell you the same thing: it’s too disruptive, too expensive, and too risky. They worry about downtime, getting locked into another overpriced vendor contract, and the strain on internal teams. That’s exactly why at Matatika, we’ve built an approach that eliminates these risks entirely—no downtime, no wasted spend, and no surprises.
Data is as essential to manufacturing today as any raw material. Yet, while most manufacturers generate valuable data across their operations, fragmented and siloed systems often keep them from putting this information to effective use. Matatika’s ETL (Extract, Transform, Load) solution is designed specifically for manufacturing’s data challenges, enabling teams to unify, automate, and harness real-time insights across their operations.
SaaS ETL Tools pricing is broken. Too many businesses are stuck with platforms that charge by rows, gigabytes, or arbitrary metrics, pushing costs higher without delivering real value. It’s a model that inflates SaaS data costs, forcing companies to pay more for data that doesn’t always lead to better insights.
Managing large amounts of data can quickly become expensive, especially for companies using platforms like Google Analytics 4 (GA4) in Snowflake. Many ETL platforms charge based on the volume of data processed, leading to high costs without added business value. At Matatika, we offer a solution that helps you save up to 99.4% on GA4 costs while maintaining high performance. Here’s how our cost-based pricing model works, and why it's more effective than traditional ETL platforms.
Imagine a modern, centralised platform that integrates commercially supported ETL (extract, transform, load) connectors / plugins and reputable open-source ETL tools. This platform would streamline data management by unifying data from various sources, ensuring consistency and reliability. Not to mention, the fixing of any fundamental data accuracy issues in the process.
This blog aims to clarify what ETL has meant traditionally, and what modern ETL tools can do for operational efficiency and tech-ROI right now. We’ll also go over the key considerations to help you opt for a top set of tools, and importantly – the right partner...
test
ImpactGrows helps corporates achieve their sustainability goals with an end-to-end platform for automated reporting, management, and deep analytics of Environmental Social, and Governance (ESG) information. A company embarking on a sustainability journey needs to consider its maturity, community sentiment, peer benchmarking, materiality mapping, goal setting, strategy & risk. At every step, trusted data is key to tracking, decision-making, and evidencing sustainability-linked lending - a $1.6 trillion lending product in 2021.