In 2025, data engineers are expected not only to deliver robust pipelines but also to integrate FinOps principles, ensuring systems scale economically as well as technically. Those who master cost attribution, pricing model evaluation, and cost-conscious architecture design are becoming business-critical, as financial awareness now defines engineering success.
Read the articleFivetran’s acquisition of Tobiko Data signals a shift from open source innovation to commercial consolidation, creating what many see as a “platform prison” where Extract, Load, and Transform are locked into one vendor ecosystem. While this promises simplicity, the true cost emerges over time through rising fees, reduced flexibility, and strategic dependencies that make switching prohibitively expensive.
Read the articleMost data teams stay locked into overpriced ETL contracts, overlooking hidden costs like wasted engineering hours, volume-based penalties, inefficiency, and auto-renewal traps. Matatika’s Mirror Mode eliminates migration risk by running old and new systems in parallel, proving savings before switching, and offering performance-based pricing that cuts ETL costs by 30–60%.
Read the articleDBT and Snowflake teams often reach a point where further optimisation delivers diminishing returns, with costs rising and engineering velocity slowing due to architectural limitations. This recap of our LinkedIn Live shows how SQL Mesh’s incremental, state-aware processing enables 50–70% cost savings, greater productivity, and sustainable growth by replacing DBT’s expensive full-rebuild approach.
Read the articleCloud providers like AWS are introducing AI-powered cost transparency tools, while ETL vendors remain silent, continuing to profit from opaque, row-based pricing models that penalise efficiency and scale. By switching to performance-based pricing and auditing pipeline usage, data teams can cut ETL costs by up to 50% without sacrificing performance.
Read the articleStay up to date with the latest news and insights for data leaders.